Using Fuzzy Knowledge of a Nuisance Parameter for Hypothesis Testing
نویسندگان
چکیده
Abstract – The problem of hypothesis testing with a nuisance parameter is considered. Two methods for using fuzzy knowledge on the nuisance parameter to test hypotheses are suggested. These methods are neither a pure classical nor a pure Bayesian approach to hypothesis testing, but rather related to both. A few known examples and their applications, which cannot be studied by the parametric statistical methods, are discussed.
منابع مشابه
TESTING STATISTICAL HYPOTHESES UNDER FUZZY DATA AND BASED ON A NEW SIGNED DISTANCE
This paper deals with the problem of testing statisticalhypotheses when the available data are fuzzy. In this approach, wefirst obtain a fuzzy test statistic based on fuzzy data, and then,based on a new signed distance between fuzzy numbers, we introducea new decision rule to accept/reject the hypothesis of interest.The proposed approach is investigated for two cases: the casewithout nuisance p...
متن کاملComparison between Frequentist Test and Bayesian Test to Variance Normal in the Presence of Nuisance Parameter: One-sided and Two-sided Hypothesis
This article is concerned with the comparison P-value and Bayesian measure for the variance of Normal distribution with mean as nuisance paramete. Firstly, the P-value of null hypothesis is compared with the posterior probability when we used a fixed prior distribution and the sample size increases. In second stage the P-value is compared with the lower bound of posterior probability when the ...
متن کاملLINEAR HYPOTHESIS TESTING USING DLR METRIC
Several practical problems of hypotheses testing can be under a general linear model analysis of variance which would be examined. In analysis of variance, when the response random variable Y , has linear relationship with several random variables X, another important model as analysis of covariance can be used. In this paper, assuming that Y is fuzzy and using DLR metric, a method for testing ...
متن کاملA New Method for Sperm Detection in Infertility Cure: Hypothesis Testing Based on Fuzzy Entropy Decision
In this paper, a new method is introduced for sperm detection in microscopic images for infertility treatment. In this method, firstly a hypothesis testing function is defined to separate sperms from plasma, non-sperm semen particles and noise. Then, some primary candidates are selected for sperms by watershed-based segmentation algorithm. Finally, candidates are either confirmed or rejected us...
متن کاملOPTIMAL STATISTICAL TESTS BASED ON FUZZY RANDOM VARIABLES
A novel approach is proposed for the problem of testing statistical hypotheses about the fuzzy mean of a fuzzy random variable.The concept of the (uniformly) most powerful test is extended to the (uniformly) most powerful fuzzy-valued test in which the test function is a fuzzy set representing the degrees of rejection and acceptance of the hypothesis of interest.For this purpose, the concepts o...
متن کامل